Dislocation Dynamics Simulations of Junctions in Hexagonal Close-Packed Crystals
نویسندگان
چکیده
The formation and strength of dislocations in the hexagonal closed packed material beryllium are studied through dislocation junctions and the critical stress required to break them. Dislocation dynamics calculations (using the code ParaDiS) of junction maps are compared to an analytical line tension approximation in order to validate our model. Results show that the two models agree very well. Also the critical shear stress necessary to break 30 30 and 30 90 dislocation junctions is computed numerically. Yield surfaces are mapped out for these junctions to describe their stability regions as function of resolved shear stresses on the glide planes. The example of two non-coplanar binary dislocation junctions with slip planes [2-1-10] (01-10) and [-12-10] (0001) corresponding to a prismatic and basal slip respectively is chosen to verify and validate our implementation.
منابع مشابه
The Strength of Binary Junctions in Hexagonal Close-Packed Crystals
A comparative study of non-coplanar binary dislocation junctions in magnesium (Mg) and beryllium (Be) is presented to examine the effects of elastic properties and active Burgers vectors on junction formation and destruction in hexagonal close-packed (hcp) crystals via discrete dislocation dynamics simulations. Two junction configurations formed at intersecting prismatic ð01 10Þ=basal ð0001Þ pl...
متن کاملCOMPUTATIONAL ENUMERATION OF POINT DEFECT CLUSTERS IN DOUBLE- LATTICE CRYSTALS
The cluster representation matrices have already been successfully used to enumerate close-packed vacancy clusters in all single-lattice crystals [I, 2]. Point defect clusters in double-lattice crystals may have identical geometry but are distinct due to unique atomic postions enclosing them. The method of representation matrices is extended to make it applicable to represent and enumerate ...
متن کاملAtomic structures of twin boundaries in hexagonal close-packed metallic crystals with particular focus on Mg
We have investigated twin boundaries in double-lattice hexagonal close-packed metallic materials, focusing on their atomic geometry. Combining accurate ab-initio methods and large-scale atomistic simulations we address the following two fundamental questions: (i) What are the possible intrinsic twin boundary structures in hcp crystals? (ii) Are these structures stable against small distortions?...
متن کاملOn the origin and behavior of irradiation-induced c-component dislocation loops in magnesium
C-component dislocation loops are one of the unique defects in hexagonal close-packed (hcp) crystals that promote the accelerated growth and void formation under irradiation. Here, we report in situ observation of c-component dislocation loop formation in Mg under electron irradiation with emphasis on their atomic structures. Aberration-corrected scanning transmission electron microscopy imagin...
متن کاملUniaxial stress-driven coupled grain boundary motion in hexagonal close-packed metals: A molecular dynamics study
Stress-driven grain boundary (GB) migration has been evident as a dominant mechanism accounting for plastic deformation in crystalline solids. Using molecular dynamics (MD) simulations on a Ti bicrystal model, we show that a uniaxial stress-driven coupling is associated with the recently observed 90 GB reorientation in shock simulations and nanopillar compression measurements. This is not consi...
متن کامل